Instruments

Using the TPS40090EVM-001

User's Guide

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:
This evaluation kit being sold by TI is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this evaluation kit not meet the specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE

 TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

DYNAMIC WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 0 Vdc to 100 Vdc .
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than $50^{\circ} \mathrm{C}$. The EVM is designed to operate properly with certain components above $50^{\circ} \mathrm{C}$ as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

TPS40090 Multi-Phase Buck Converter Steps-Down from $12-\mathrm{V}$ to $1.5-\mathrm{V}$ at 100 A

Systems Power

Contents

1 Introduction 4
2 Features 5
3 Schematic 9
4 Component Selection 12
5 Test Results/Performance Data 12
6 Layout Considerations 12

1 Introduction

The TPS40090EVM-001 multi-phase dc-to-dc converter utilizes the TPS40090 multi-phase controller and UCC27222 predictive gate driver to step down a $12-\mathrm{V}$ input to $1.5-\mathrm{V}$ at 420 kHz . The output current is 100 A . The TPS40090 provides fixed-frequency, peak current-mode control with forced-phase current balancing. Phase currents are sensed by the voltage drop across the DC resistance (DCR) of inductors. Other features include a single voltage operation, true differential output voltage sense, user programmable current limit, capacitor-programmable soft-start and a power good indicator. Device operation is specified in the TPS40090 datasheet[1].

2 Features

Table 1. TPS40090EVM-001 Performance Summary

3 Schematic

Figure 1. HPA026 Schematic Part 1 - TPS40090 Controller

Figure 2. HPA026 Schematic Part 2 - Power Stage and Driver Circuit
\uparrow Not used.

Figure 3. HPA026 Schematic Part 3 - Load Transient Generator

4 Component Selection

4.1 Frequency of Operation

The clock oscillator frequency for the TPS40090 is programmed with a single resistor from RT (pin 16) to signal ground. Equation (1) from the datasheet allows selection of the R_{\top} capacitor in $\mathrm{k} \Omega$ for a given switching frequency in kHz .

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=\mathrm{R} 12=\mathrm{K}_{\mathrm{PH}} \times\left(39.2 \times 10^{3} \times f_{\mathrm{PH}}^{-1.041}-7\right)(\mathrm{k} \Omega) \tag{1}
\end{equation*}
$$

where

- K_{PH} is the coefficient that depends on the number of active phases
- $\quad f_{\mathrm{PH}}$ is the single phase frequency, in kHz
- for 2-phase and 3-phase configurations $K_{P H}=1.333$
- for 4-phase $\mathrm{K}_{\mathrm{PH}}=1.0$ is a single phase frequency, kHz .

The R_{\top} resistor value is returned by the last expression in $k \Omega$. For $420 \mathrm{kHz}, \mathrm{R}_{\mathrm{T}}$ is calculated as $65.8 \mathrm{k} \Omega$ and a resistor with a $64.9-\mathrm{k} \Omega$ standard value is used.

4.2 Inductance Value

The output inductor value for each phase can be calculated from the volt-second during off time, shown in equation (2).

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{OUT}}}{f \times \mathrm{I}_{\mathrm{RIPPLE}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}(\max)}}\right) \tag{2}
\end{equation*}
$$

where

- I IRIPPLE is usually chosen to be between 10% and 40% of maximum phase current $I_{\mathrm{PH}(\max)}$.

With $I_{\text {RIPPLE }}=20 \%$ of $I_{P H(\max)}$, there is a ripple current of 5 A , and the inductance value is found to be $0.63 \mu \mathrm{H}$. Using SPM12550-R62M300 inductors from TDK, each had inductance of $0.6 \mu \mathrm{H}$ and resistance of $1.75-\mathrm{m} \Omega$.

In multi-phase high current buck converter design, due to the ripple cancellation factor from interleaving, the inductor value could be smaller than that in a single phase operation. But from conduction loss point of view, the inductor value tends to be big to reduce the ripple current, thus losses. So there is a trade off.

4.3 Input Capacitor Selection

The bulk input capacitor selection is based on the input voltage ripple requirements. Due to the interleaving of multi phase, the input RMS current is reduced. The input ripple current RMS value over load current is calculated in equation (3).

$$
\begin{aligned}
& \Delta \mathrm{I}_{\mathrm{IN(nom)}}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)= \\
& {\left[\left(\mathrm{D}-\frac{\mathrm{k}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)}{\mathrm{N}_{\mathrm{PH}}}\right) \times\left(\frac{\mathrm{k}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)+1}{\mathrm{~N}_{\mathrm{PH}}}-\mathrm{D}\right)\right]+\left(\frac{\mathrm{N}_{\mathrm{PH}}}{12 \times \mathrm{D}^{2}}\right) \times\left[\frac{\mathrm{V}_{\mathrm{OUT}} \times(1-\mathrm{D})}{\mathrm{L} \times f \times\left(\mathrm{I}_{\mathrm{OUT}}\right)}\right]^{2} \times} \\
& {\left[\left(\mathrm{k}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)+1\right)^{2} \times\left(\mathrm{D}-\frac{\mathrm{k}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)}{\mathrm{N}_{\mathrm{PH}}}\right)^{3}+\mathrm{k}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)^{2} \times\left(\frac{\mathrm{k}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)+1}{\mathrm{~N}_{\mathrm{PH}}}-\mathrm{D}\right)^{3}\right]}
\end{aligned}
$$

where

- $k\left(N_{P H}, D\right)=$ floor $\left(N_{P H} \times D\right)$
- $\operatorname{floor}(\mathrm{x})$ is the function to return the greatest integer less than or equal to x
- $\quad \mathrm{NPH}_{\mathrm{PH}}$ is the number of active phases

Figure 4 shows the input ripple current RMS value over the load current versus duty cycle with different number of active phases.

Figure 4. Input Ripple Current RMS Value Overload Current

The maximum input ripple RMS current can be estimated as shown in (4).

$$
\begin{equation*}
\mathrm{I} \cong \mathrm{I}_{\mathrm{OUT}} \times \Delta \mathrm{I}_{\mathrm{IN}(\text { nom })}\left(4, \mathrm{D}_{\min }\right)=3.18 \mathrm{~A} \tag{4}
\end{equation*}
$$

It is also important to consider a minimum capacitance value which limits the voltage ripple to a specified value if all the current is supplied by the onboard capacitor. For a typical ripple voltage of 150 mV the maximum ESR is calculated in (5) as:

$$
\begin{equation*}
\mathrm{ESR}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{I}}=\frac{150 \mathrm{mV}}{3.18 \mathrm{~A}}=47 \mathrm{~m} \Omega \tag{5}
\end{equation*}
$$

Two $68-\mu \mathrm{F}, 20-\mathrm{V}$ Oscon capacitors (20SVP68M) from Sanyo are placed on the input side of the board. The ESR is $40 \mathrm{~m} \Omega$ for each capacitor.

4.4 Output Ripple Cancellation and Capacitor Selection

Due to the interleaving of channels, the total output ripple current is smaller than the ripple current from a single phase. The ripple cancellation factor is expressed in equation (6).

$$
\begin{align*}
& \Delta \mathrm{l}_{\mathrm{OUT}}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)=\frac{\left(\begin{array}{c}
\mathrm{N}_{\mathrm{PH}} \\
i=1
\end{array}\left|i-\mathrm{N}_{\mathrm{PH}} \times \mathrm{D}\right|\right)}{\left[\begin{array}{l}
\mathrm{N}_{\mathrm{PH}}^{-1} \\
i \stackrel{\prod_{1}}{=}
\end{array}\left(\left|i-\mathrm{N}_{\mathrm{PH}} \times \mathrm{D}\right|+1\right)\right]} \tag{6}\\
& \mathrm{k}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)=\operatorname{if}\left(\mathrm{N}_{\mathrm{PH}} \leq 1, \Delta \mathrm{l}_{\mathrm{OUT}}(\mathrm{D}), \Delta \mathrm{l}_{\mathrm{OUT}}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)\right)
\end{align*}
$$

where

- D is the duty cycle for a single phase
- $\quad \mathrm{N}_{\mathrm{PH}}$ is the number of active phases
- $K\left(\mathrm{~N}_{\mathrm{PH}}\right)$ is the intermediate function for calculation

In this case, $\mathrm{N}_{\mathrm{PH}}=4$ and $\mathrm{D}_{\text {min }}=0.107$ which yields $\mathrm{k}=0.573$.
The actual output ripple is calculated in equation (7)

$$
\begin{equation*}
\mathrm{I}_{\mathrm{RIPPLE}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~L} \times f} \times \mathrm{K}\left(\mathrm{~N}_{\mathrm{PH}}, \mathrm{D}\right)=\frac{1.5 \mathrm{~V}}{0.6 \mu \mathrm{H} \times 420 \mathrm{kHz}} \times 0.573=3.41 \mathrm{~A} \tag{7}
\end{equation*}
$$

Figure 5. Input Ripple Current RMS Value Overload Current
Selection of the output capacitor is based on many application variables, including function, cost, size, and availability. There are three ways to calculate the output capacitance.

1. The minimum allowable output capacitance is determined by the amount of inductor ripple current and the allowable output ripple, as given in equation (8).
$\mathrm{C}_{\text {OUT(min) }}=\frac{\mathrm{I}_{\text {RIPPLE }}}{8 \times f \times \mathrm{V}_{\text {RIPPLE }}}=\frac{3.41 \mathrm{~A}}{8 \times 420 \mathrm{kHz} \times 10 \mathrm{mV}}=101 \mu \mathrm{~F}$
In this design, $\operatorname{CoUT}(\min)$ is $101-\mu \mathrm{F}$ with $\mathrm{V}_{\text {RIPPLE }}=10 \mathrm{mV}$. However, this affects only the capacitive component of the ripple voltage, and the final value of capacitance is generally influenced by ESR and transient considerations.
2. ESR limitation. (To limit the ripple voltage to 10 mV , the capacitor ESR should be less than the value calculated in equation (9)).

$$
\begin{equation*}
\mathrm{R}_{\mathrm{C}}<=\frac{\mathrm{V}_{\text {RIPPLE }}}{\mathrm{I}_{\text {RIPPLE }}}=\frac{10 \mathrm{mV}}{3.41 \mathrm{~A}}=2.93 \mathrm{~m} \Omega \tag{9}
\end{equation*}
$$

3. Transient consideration. An additional consideration in the selection of the output inductor and capacitance value can be derived from examining the transient voltage overshoot which can be initiated with a load step from full load to no load. By equating the inductive energy with the capacitive energy the equation (10) can be derived.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{OUT}}=\frac{\mathrm{L} \times \mathrm{I}^{2}}{\mathrm{~V}^{2}}=\frac{\mathrm{L}_{\mathrm{EQ}} \times\left(\left(\mathrm{I}_{\mathrm{OH}}\right)^{2}-\left(\mathrm{I}_{\mathrm{OL}}\right)^{2}\right)}{\left(\mathrm{V}_{\mathrm{OUT} 2}\right)^{2}-\left(\mathrm{V}_{\mathrm{OUT} 1}\right)^{2}}=\frac{\frac{0.6 \mu \mathrm{H}}{4} \times(100 \mathrm{~A})^{2}}{\left((1.75 \mathrm{~V})^{2}-(1.5 \mathrm{~V})^{2}\right)}=1846 \mu \mathrm{~F} \tag{10}
\end{equation*}
$$

where

- $\mathrm{IOH}_{\mathrm{OH}}$ full load
- I_{OL} is no load,
- $\mathrm{V}_{\text {OUT2 }}$ is the the allowed transient voltage rise
- $\mathrm{V}_{\text {OUT1 }}$ is the initial voltage

In this 100-A design the capacitance required for limiting the transient is significantly larger than the capacitance required to keep the ripple acceptably low. Eight 220- μ F POSCAP capacitors are in parallel with four $22-\mu \mathrm{F}$ ceramic capacitors. The ESR of each POSCAP is $15 \mathrm{~m} \Omega$.

4.5 MOSFET Selection

There are different requirements for switching FET(s) and rectifier FET(s) in the high-ratio step down application. The duty cycle is around 12%. So the rectifier FET(s) is on for most of the cycle. The conduction loss is dominant. Low-R $\mathrm{RS}_{\text {(on) }} \mathrm{FET}(\mathrm{s})$ are preferred. Also due to the $\mathrm{dV} / \mathrm{dt}$ turn on of the rectifier FET(s) and cross conduction, choose a rectifier FET with Qgs > Qgd. When the switch node is falling, the Qgd can pull the gate of the lower FET below GND, which upsets the driver. Two Si7880DP from Siliconix are in parallel for the rectifier FET. The $R_{D S(o n)}$ of this FET is $3 \mathrm{~m} \Omega$ and Qgs $=18 \mathrm{nC}$, and $\mathrm{Qgd}=10.5 \mathrm{nC}$.

The switching FET switches at high voltage and high current, the switching loss is dominant. One single Si7860DP is selected for its low total gate charge.

Both types of FET(s) are offered in the Powerpak SO-8 package.
The PCB is layed out for two FETs in parallel, for both switching FET(s) and rectifier FET(s), to give the feasibility to modify the board for different applications.

4.6 Current Sensing

TPS40090 supports both resistor current sensing and DCR current sensing approach. DCRs of the output inductors are used in this design as the current sensing components. The DCR current sensing circuit is shown in Figure 5. The idea is to parallel a R-C network to the inductor. If the two time constants are same ($\mathrm{L} / \mathrm{DCR}=\mathrm{R} \times \mathrm{C}$), then $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DCR}}$. Extra circuit, shown in (b), is used to compensate the positive temperature coefficient of copper specific resistance, which is $0.385 \% /{ }^{\circ} \mathrm{C}$. See detail explanation in the datasheet.

With the chosen inductor described in Inductance Value, (section 4.2, of this document) the following values are used.

- $\mathrm{R}=19.6 \mathrm{k} \Omega$
- $\mathrm{C}=10 \mathrm{nF}$
- $R_{N T C}=100 \mathrm{k} \Omega$
- $R 1=124 \mathrm{k} \Omega$
- R2=22.6 k Ω

UDG-03136
Figure 6. DCR Current Sensing Circuit with Copper Temperature Compensation

4.7 Overcurrent Limit Protection

The overcurrent function monitors the voltage level separately on each current sense input and compares it to the voltage on ILIM pin set by the divider from the controller's reference.

If the threshold of $\mathrm{V}_{\text {ILIM }} / 2.7$ is exceeded, the PWM cycle on the respected phase is terminated. Voltage level on the ILIM pin is determined by (11).

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ILIM}}=2.7 \times \mathrm{I}_{\mathrm{PH}(\max)} \times \mathrm{R}_{\mathrm{CS}} ; \quad \mathrm{I}_{\mathrm{PH}(\max)}=\mathrm{I}_{\mathrm{OUT}}+\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\mathrm{OUT}}}{2 \times \mathrm{L}_{\mathrm{OUT}} \times f_{\mathrm{SW}} \times \mathrm{V}_{\mathrm{IN}}} \tag{11}
\end{equation*}
$$

where

- $\mathrm{I}_{\mathrm{PH}(\max)}$ is the maximum allowable value of the phase current
- R_{CS} is the value of the current sense resistor

4.8 Compensation Components

The TPS40090 uses peak current mode control. Type II network is used here, which is implemented to provide one zero and two poles. The first pole is placed at the origin to improve DC regulation.

The ESR zero of the power stage is:

$$
\begin{equation*}
f_{\text {ESRZ }}=\frac{1}{2 \pi \times R_{\mathrm{C}} \times \mathrm{C}_{\mathrm{OUT}}}=354 \mathrm{kHz} \tag{12}
\end{equation*}
$$

The zero is placed near 3.96 kHz to produce a reasonable time constant.

$$
\begin{equation*}
f_{\mathrm{Z}}=\frac{1}{2 \pi \times \mathrm{R} 11 \times \mathrm{C} 11} \tag{13}
\end{equation*}
$$

The second pole is placed at ESR zero (354 kHz).

$$
\begin{equation*}
f_{\mathrm{P} 1}=\frac{1}{2 \pi \times \mathrm{R} 11 \times\left(\frac{(\mathrm{C} 11 \times \mathrm{C} 12)}{(\mathrm{C} 11+\mathrm{C} 12)}\right)} \tag{14}
\end{equation*}
$$

The resulting values selected for this design are:

- $\mathrm{R} 11=40.2 \mathrm{k} \Omega$
- $\mathrm{C} 11=1000 \mathrm{pF}$
- $\mathrm{C} 12=10 \mathrm{pF}$

4.9 Droop Function

Resistor R8, which is connected from DROOP (pin 7) to REF (pin 8), is used to program the droop function. See the datasheet for details. A 10- Ω resistor is used for R8 on the board. If droop function is required, R8 needs to be modified according to the required droop voltage. R8 can be calculated from the following equation.

$$
\begin{equation*}
\mathrm{R} 8=\frac{2500 \mathrm{~N}_{\mathrm{PH}} \times \mathrm{V}_{\mathrm{DROOP}}}{\mathrm{I}_{\mathrm{OUT}} \times \mathrm{R}_{\mathrm{CS}}} \times \frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{~V}_{\mathrm{OUT}}}=\frac{2500 \mathrm{~N}_{\mathrm{PH}} \times \mathrm{V}_{\mathrm{DROOP}}}{\mathrm{~V}_{\mathrm{CS} 1}+\mathrm{V}_{\mathrm{CS} 2}+\mathrm{V}_{\mathrm{CS} 3}+\mathrm{V}_{\mathrm{CS} 4}} \times \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \tag{15}
\end{equation*}
$$

where

- $\mathrm{V}_{\text {DROOP }}$ is the allowed output voltage droop at full load output current
- R_{CS} is the current sensing resistor and
- $\quad \mathrm{N}_{\mathrm{PH}}$ is the number of active phases

5 Test Results/Performance Data

5.1 Efficiency and Power Loss

Figure 7 shows the efficiency as the load varies from 10 A to over 100 A. Efficiency curves with $\mathrm{L}_{\text {OUT }}=0.6-\mu \mathrm{H}$ and $\mathrm{L}_{\text {OUT }}=0.3-\mu \mathrm{H}$ are compared. The efficiency at full load is about 86.6% with LOUT $=0.6-\mu \mathrm{H}$ and 86% with LOUT $=0.3-\mu \mathrm{H}$.

Figure 8 shows the total loss versus the load current, which is about 23.3 W and 24.1 W at 100 A with above mentioned inductor values.

Figure 7.

Figure 8.

5.2 Closed-Loop Performance

The TPS40090 uses peak current-mode control. Figure 9 shows the bode plots at 10 A and 100 A of load current respectively, where no droop function is implemented. The crossover frequency is at 89 kHz with phase margin of 59 degrees.

Figure 9.

Figure 10.

5.3 Output Ripple and Noise

Figure 11 shows typical output noise where $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{OUT}}=100 \mathrm{~A}$. The output ripple is less than 10 mV .

Figure 11. Output Noise

5.4 Transient Response

The on-board load transient circuit enables to check the step load transient response on the same board. By simply connecting pin1 and pin2 with a jumper on J3, the NE555PW generates a $100-\mathrm{Hz}$ pulse signal with a 1% duty cycle to drive U6 (Si7858DP) which is in series with three $50-\mathrm{m} \Omega$ resistors, so a $90-\mathrm{A}$ step load is created. The slew rates of the transient are $200 \mathrm{~A} / \mathrm{\mu s}$ for the load step-down and $160 \mathrm{~A} / \mu$ s for the load step-up.
The transient response is shown in Figure 12 as the load is stepped from 10 A to 100 A . The output deviation is approximately 200 mV and the settling time is within $15 \mu \mathrm{~s}$.

Figure 12. Transient Response Without Droop Function

Figure 13. Transient Response With Droop Function

6 Layout Considerations

The PCB layout plays a critical role in the performance in a high frequency switching power supply design. Following the suggestions listed below will help to improve the performance and expedite the design.

- To take full advantage of the ripple cancellation factor from interleaving, place the input capacitors before the junction where the input voltage is distributed to each phase. Place the output capacitors after the junction where all the inductors are connected;
- Place the external drivers right next to the FETs and use at least 25 mil trace for gate drive signal to improve noise immunity
- Place some ceramic capacitors in the input of each channel to filter the current spikes
- Place the NTC resistor right next to its related inductor for better thermal coupling
- 2 oz. or thicker copper is recommended to reduce the trace impedance
- Place enough vias along pads of the power components to increase thermal conduction
- Keep the current sensing traces as short as possible to avoid excessive noise pick up
- Place the output inductors as symmetric as possible in relation to the output connectors to obtain similar voltage drop from the trace impedance

7 EVM Assembly Drawing and PCB Layout

Figure 14. Top Side Component Assembly

HPA026 REV. E3 BOTTOM ASSY
Figure 15. Bottom Assembly

Figure 16. Top Side Copper

Figure 17. Internal 1 (Ground Plane)

Figure 18. Internal 3 (Power Plane)

Figure 19. Internal 4 (Power Plane)

Figure 20. Internal 4 (Ground Plane)

Figure 21. Bottom Layer Copper

8 List of Materials

The following table lists the TPS40090EVM-001 components corresponding to the schematic shown in Figure 1.

Table 2. List of Materials

REFERENCE DESIGNATOR		QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
Capacitor	C1, C4	2	OS-CON, 68- $\mu \mathrm{F}, 20 \mathrm{~V}, 40-\mathrm{m} \Omega$, 20\%	$\begin{gathered} 10.3 \mathrm{~mm} \\ (\mathrm{~F} 8) \end{gathered}$	Sanyo	20SVP68M
	$\begin{aligned} & \text { C2, C5, C7, C8, } \\ & \text { C9, C11 } \end{aligned}$	6	Ceramic, 1-nF, $25 \mathrm{~V}, \pm 5 \%$	603	muRata	GRM39SL102J25
	C3	1	Ceramic, $1.0-\mu \mathrm{F}, 16 \mathrm{~V}, \pm 10 \%$	805	muRata	GRM40B105K16
	C6	0		603	muRata	GRM39yyyxxxKvvvA
	C10	1	Ceramic, 10-pF, 50-V, COG, $\pm 2.5 \%$	603	muRata	GRQ706C0G100C50
	C12	1	Ceramic, 10-nF, $50-\mathrm{V}, \pm 5 \%$	805	muRata	GRM40UJ103J50
	$\begin{aligned} & \text { C13,C14, C15, } \\ & \text { C16, C17, C18, } \\ & \text { C21, C22, C23, } \\ & \text { C24 } \end{aligned}$	10	Ceramic, $4.7-\mu \mathrm{F}, 16-\mathrm{V}, \pm 10 \%$, X5R	1206	muRata	$\begin{aligned} & \text { GRM42- } \\ & \text { 65X5R475K16 } \end{aligned}$
	$\begin{aligned} & \text { C19,C20,C25, } \\ & \text { C26 } \end{aligned}$	4	Ceramic, $1.0-\mu \mathrm{F}, 16-\mathrm{V}, \pm 10 \%$, X5R	805	muRata	GRM40B105K16
	C27,C28	2	Ceramic, $0.1-\mu \mathrm{F}, 25-\mathrm{V}, \pm 10 \%$, X5R	805	muRata	GRM40R104K25
	$\begin{aligned} & \text { C29, C42, C43, } \\ & \text { C44, C45 } \end{aligned}$	5	Ceramic, 10-nF, 50-V, $\pm 5 \%$, X5R	805	muRata	GRM40UJ103J50
	$\begin{aligned} & \text { C30, C31, C32, } \\ & \text { C33, C34, C35, } \\ & \text { C36, C37 } \end{aligned}$	8	Ceramic, 10- $\mu \mathrm{F}, 25-\mathrm{V}, \mathrm{X} 5 \mathrm{R}$	1210	TDK	C3225X5R1E106M
	$\begin{aligned} & \text { C38, C39, C40, } \\ & \text { C41 } \end{aligned}$	4	Ceramic, 1000-pF, $50-\mathrm{V}, \pm 5 \%$, X5R	805	muRata	GRM40TH102J50
	$\begin{aligned} & \text { C42, C43, C44, } \\ & \text { C45 } \end{aligned}$	4	Ceramic, 10-nF, 50-V, COG	805	TDK	C2012COG1H103JT
	$\begin{aligned} & \text { C46,C47,C50, } \\ & \text { C51, C54, C55, } \\ & \text { C56, C57 } \end{aligned}$	8	POSCAP, 220- $\mu \mathrm{F}, 2.5-\mathrm{V}, 15-\mathrm{m} \Omega$, 20\%	7343 (D)	Sanyo	2R5TPE220M
	$\begin{aligned} & \text { C48, C49, C52, } \\ & \text { C53 } \end{aligned}$	4	Ceramic, 10- ${ }^{\text {F }}$, 6.3-V, X5R	1206	TDK	C3216X5R0J106M
Diode	$\begin{aligned} & \text { D1, D2, D3, D4, } \\ & \text { D6 } \end{aligned}$	5	Dual Schottky, 200-mA, 30-V	SOT23	VishayLiteon	BAT54C
	D5	1	Dual ultra-fast, series, 200-mA, 70-V	SOT23	Fairchild	BAV99
Test Points	E1, E2	2	Black, 1-mm	0.038	Farnell	240-333
	TP1	1	0.062 hole, red		None	Void
	TP2	1	0.062 hole, black			
Jumper	J1, J2, J9, J10	4	Lug, solderless, \#2 - \#8 AWG, 1/4	Copper	524600	ILSCO
	J3	1	Header, 3 -pin, 100 mil spacing, (36-pin strip)	0.100×3	Sullins	PTC36SAAN
	J4, J5, J6, J7, J8	5	Connector, shielded, test jack vertical	. 0125 DIA	Johnson	129-0701-202
Inductor	L1, L2. L3. L4	4	SMT, $0.62-\mu \mathrm{H}, 30-\mathrm{A}, 1.75-\mathrm{m} \Omega$	$\begin{gathered} 0.524 \mathrm{x} \\ 0.492 \\ \hline \end{gathered}$	TDK	$\begin{aligned} & \text { SPM12550- } \\ & \text { R62M300 } \end{aligned}$

(1) Cannot be substituted.

REFERENCE DESIGNATOR		QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
MOSFET	Q1	1	N-channel, 20-V, 0.7-A, 385-m Ω, P-channel,-20-V, 0.440-A, 995-m Ω	SC-70	Vishay	Si1553DL
	$\begin{aligned} & \text { Q2, Q3, Q4, } \\ & \text { Q5(1) } \end{aligned}$	4	N -channel, $30-\mathrm{V}, 18-\mathrm{A}, 8.0-\mathrm{m} \Omega$,	$\begin{aligned} & \text { PWRPAK } \\ & \text { S0-8 } \end{aligned}$	VishaySiliconix	Si7860DP
	Q6, Q7, Q8, Q9	0	N -channel, $30-\mathrm{V}, 18-\mathrm{A}, 8.0-\mathrm{m} \Omega$,	$\begin{gathered} \hline \text { PWRPAK } \\ \text { S0-8 } \end{gathered}$	VishaySiliconix	Si7860DP
	$\begin{aligned} & \text { Q10, Q11, Q12, } \\ & \text { Q13, Q14, Q15, } \\ & \text { Q16, Q17 } \end{aligned}$	8	N-channel, 30-V, 29-A, 3-m Ω,	$\begin{aligned} & \text { PWRPAK } \\ & \text { S0-8 } \end{aligned}$	VishaySiliconix	Si7880DP
Resistor	R1	1	Chip, 8.25-k , 1/16-W, 1\%	603	Std	Std
	R2	1	Chip, 6.19-k ${ }^{\text {, }}$, 1/16-W, 1\%	603	Std	Std
	R3	0		603	Std	Std
	R4	1	Chip, 10-k , 1/16-W, 1\%	603	Std	Std
	R5	1	Chip, 8.75-k $\Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Std	Std
	R6	1	Chip, 49.9-Ohms, 1/16-W, 1\%	603	Std	Std
	R7	1	Chip, 40.2-k Ω, 1/16-W, 1\%	603	Std	Std
	R8	1	Chip, 10- $\Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Std	Std
	R9, R11	2	Chip, 10-k Ω, 1/16-W, 1\%	603	Std	Std
	R10	1	Chip, 475-k , 1/16-W, 5\%	603	Std	Std
	R12	1	Chip, 64.9-k Ω, 1/16-W, 1\%	603	Std	Std
	R13	1	Chip, 100-k , 1/16-W, 5\%	805	Std	Std
	R14, R15, R16, R17	4	Chip, 3.3- Ω, 1/16-W, 1\%	603	Std	Std
	R18, R19, R21	3	Chip, 0.050- $\Omega, 1-\mathrm{W}, 1 \%$	2512	Vishay	$\begin{aligned} & \text { WSL-2512-R050 } \\ & \text { R86 } \end{aligned}$
	R20, R22	0		2512	Vishay	$\begin{aligned} & \text { WSL-2512-xx 1\% } \\ & \text { R86 } \end{aligned}$
	$\begin{aligned} & \text { R23, R24, R55, } \\ & \text { R56 } \end{aligned}$	4	Chip, 10- Ω, 1/16-W, 1\%	603	Std	Std
	R25	1	Chip, 143-k , 1/10-W, 1\%	805	Std	Std
	R26	1	Chip, 1.43-k , 1/10-W, 1\%	805	Std	Std
	$\begin{array}{\|l} \text { R27, R28, R29, } \\ \text { R30 } \end{array}$	4	Chip, 2.2- Ω, 1/10-W, 1\%	805	Std	Std
	$\begin{aligned} & \text { R31, R32, R35, } \\ & \text { R36 } \end{aligned}$	4	Chip, 19.6-k , 1/10-W, 1\%	805	Std	Std
	$\begin{array}{\|l} \text { R33, R34, R37, } \\ \text { R38, R41, R42, } \\ \text { R45, R46, } \end{array}$	8	Chip, 2.7- Ω, 1/10-W, 1\%	603	Std	Std
	$\begin{aligned} & \text { R39, R40, R43, } \\ & \text { R44, } \end{aligned}$	4	Chip, 22.6-k , 1/10-W, 1\%	805	Std	Std
	$\begin{aligned} & \text { R47, R49, R51, } \\ & \text { R52 } \end{aligned}$	4	Chip, 124-k , 1/10-W, 1\%	805	Std	Std
	$\begin{aligned} & \text { R48, R50, R53, } \\ & \text { R54 } \end{aligned}$	4	NTC chip, 100-k , 1/10-W, 1\%	805	Vishay	NTHS0603N01N1003J

(1) Cannot be substituted.

REFERENCE DESIGNATOR		QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
Integrated Circuit	U1(1)	1	Multi-phase synchronous buck controller	TSSOP-24	TI	TPS40090PW
	U2,U3,U4,U5(1)	4	High-efficiency predictive synchronous buck driver	PWP-14	TI	UCC27222PWP
	U6	1	N-channel, MOSFET, 12-V, 29-A, 3-m Ω	PWRPAK S0-8	Vishay	Si7858DP
	U7	0	N-channel, MOSFET, 12-V, 29-A, 3-m Ω	PWRPAK S0-8	Vishay	Si7858DP
	U8	1	Precision timer	TSSOP-8	TI	NE555PW

(1) Cannot be substituted.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

